Notifications
Clear all

THE SCIENCE OF LONGEVITY


ATP - METABOLIC FITNESS - RESEARCH - EXERCISE - CELLULAR MLETABOLISM - VITAMINS - MINERALS


LongevityMeds.com is an information archive of longevity science topics to post and discuss.

This discussion board is for anyone who is interested in living a longer & healthier life.

Rapamycin as a potential repurpose drug candidate for the treatment of COVID-19  


Gnomebe
Posts: 53
Admin
Topic starter
(@gnomebe)
Member
Joined: 1 year ago
. 2020 Nov 1;331:109282.

 doi: 10.1016/j.cbi.2020.109282. Epub 2020 Oct 6.

Rapamycin as a potential repurpose drug candidate for the treatment of COVID-19

Affiliations
    • PMID: 33031791

 

 

Free PMC article

Abstract

The novel human coronavirus-2 (HCoV-2), called SARS-CoV-2, is the causative agent of Coronavirus Induced Disease (COVID-19) and has spread causing a global pandemic. Currently, there is no vaccine to prevent infection nor any approved drug for the treatment. The development of a new drug is time-consuming and cannot be relied on as a solution in combatting the immediate global challenge. In such a situation, the drug repurposing becomes an attractive solution to identify the potential of COVID-19 treatment by existing drugs, which are approved for other indications. Here, we review the potential use of rapamycin, an mTOR (Mammalian Target of Rapamycin) inhibitor that can be repurposed at low dosages for the treatment of COVID-19. Rapamycin inhibits protein synthesis, delays aging, reduces obesity in animal models, and inhibits activities or expression of pro-inflammatory cytokines such as IL-2, IL-6 and, IL-10. Overall, the use of rapamycin can help to control viral particle synthesis, cytokine storms, and contributes to fight the disease by its anti-aging and anti-obesity effects. Since, rapamycin targets the host factors and not viral machinery, it represents a potent candidate for the treatment of COVID-19 than antiviral drugs as its efficacy is less likely to be dampened with a high mutation rate of viral RNA. Additionally, the inhibitory effect of rapamycin on cell proliferation may aid in reducing viral replication. Therefore, by drug repurposing, low dosages of rapamycin can be tested for the potential treatment of COVID-19/SARS-CoV-2 infection.

Keywords: COVID-19; Drug repurposing; Rapamycin; SARS-CoV-2; mTOR.

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Figures

Image 1

 

Fig. 1

Similar articles

References

    1. Ashburn T.T., Thor K.B. Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 2004;3(8):673–683. - PubMed
    1. Strittmatter S.M. Overcoming drug development bottlenecks with repurposing: old drugs learn new tricks. Nat. Med. 2014;20(6):590–591. - PMC - PubMed
    1. Hernandez J.J., Pryszlak M., Smith L., Yanchus C., Kurji N., Shahani V.M., Molinski S.V. Giving drugs a second chance: overcoming regulatory and financial hurdles in repurposing approved drugs as cancer therapeutics. Front. Oncol. 2017;7:273. - PMC - PubMed
    1. Coleman C.M., Sisk J.M., Mingo R.M., Nelson E.A., White J.M., Frieman M.B. Abelson kinase inhibitors are potent inhibitors of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus fusion. J. Virol. 2016;90(19):8924–8933. - PMC - PubMed
    1. Chan J.F., Lau S.K., To K.K., Cheng V.C., Woo P.C., Yuen K.Y. Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease. Clin. Microbiol. Rev. 2015;28(2):465–522. - PMC - PubMed
    1. Caron A., Richard D., Laplante M. The roles of mTOR complexes in lipid metabolism. Annu. Rev. Nutr. 2015;35:321–348. - PubMed
    1. Bar-Peled L., Sabatini D.M. Regulation of mTORC1 by amino acids. Trends Cell Biol. 2014;24(7):400–406. - PMC - PubMed
    1. Chantranupong L., Wolfson R.L., Sabatini D.M. nutrient-sensing mechanisms across evolution. Cell. 2015;161(1):67–83. - PMC - PubMed
    1. Martel R.R., Klicius J., Galet S. Inhibition of the immune response by rapamycin, a new antifungal antibiotic. Can. J. Physiol. Pharmacol. 1977;55(1):48–51. - PubMed
    1. Dumont F.J., Staruch M.J., Koprak S.L., Melino M.R., Sigal N.H. Distinct mechanisms of suppression of murine T cell activation by the related macrolides FK-506 and rapamycin. J. Immunol. 1990;144(1):251–258. - PubMed
    1. Grabiner B.C., Nardi V., Birsoy K., Possemato R., Shen K., Sinha S., Jordan A., Beck A.H., Sabatini D.M. A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Canc. Discov. 2014;4(5):554–563. - PMC - PubMed
    1. Wagle N., Grabiner B.C., Van Allen E.M., Hodis E., Jacobus S., Supko J.G., Stewart M., Choueiri T.K., Gandhi L., Cleary J.M., Elfiky A.A., Taplin M.E., Stack E.C., Signoretti S., Loda M., Shapiro G.I., Sabatini D.M., Lander E.S., Gabriel S.B., Kantoff P.W., Garraway L.A., Rosenberg J.E. Activating mTOR mutations in a patient with an extraordinary response on a phase I trial of everolimus and pazopanib. Canc. Discov. 2014;4(5):546–553. - PMC - PubMed
    1. Neshat M.S., Mellinghoff I.K., Tran C., Stiles B., Thomas G., Petersen R., Frost P., Gibbons J.J., Wu H., Sawyers C.L. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc. Natl. Acad. Sci. U. S. A. 2001;98(18):10314–10319. - PMC - PubMed
    1. Jaeschke A., Hartkamp J., Saitoh M., Roworth W., Nobukuni T., Hodges A., Sampson J., Thomas G., Lamb R. Tuberous sclerosis complex tumor suppressor-mediated S6 kinase inhibition by phosphatidylinositide-3-OH kinase is mTOR independent. J. Cell Biol. 2002;159(2):217–224. - PMC - PubMed
    1. Shaw R.J., Bardeesy N., Manning B.D., Lopez L., Kosmatka M., DePinho R.A., Cantley L.C. The LKB1 tumor suppressor negatively regulates mTOR signaling. Canc. Cell. 2004;6(1):91–99. - PubMed
    1. Oza A.M., Elit L., Tsao M.S., Kamel-Reid S., Biagi J., Provencher D.M., Gotlieb W.H., Hoskins P.J., Ghatage P., Tonkin K.S., Mackay H.J., Mazurka J., Sederias J., Ivy P., Dancey J.E., Eisenhauer E.A. Phase II study of temsirolimus in women with recurrent or metastatic endometrial cancer: a trial of the NCIC Clinical Trials Group. J. Clin. Oncol. 2011;29(24):3278–3285. - PMC - PubMed
    1. Harrison D.E., Strong R., Sharp Z.D., Nelson J.F., Astle C.M., Flurkey K., Nadon N.L., Wilkinson J.E., Frenkel K., Carter C.S., Pahor M., Javors M.A., Fernandez E., Miller R.A. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009;460(7253):392–395. - PMC - PubMed
    1. Vellai T., Takacs-Vellai K., Zhang Y., Kovacs A.L., Orosz L., Müller F. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature. 2003;426(6967):620. - PubMed
    1. Dai D.F., Karunadharma P.P., Chiao Y.A., Basisty N., Crispin D., Hsieh E.J., Chen T., Gu H., Djukovic D., Raftery D., Beyer R.P., MacCoss M.J., Rabinovitch P.S. Altered proteome turnover and remodeling by short-term caloric restriction or rapamycin rejuvenate the aging heart. Aging Cell. 2014;13(3):529–539. - PMC - PubMed
    1. Blagosklonny M.V. Aging and immortality: quasi-programmed senescence and its pharmacologic inhibition. Cell Cycle. 2006;5(18):2087–2102. - PubMed
    1. Blagosklonny M.V. An anti-aging drug today: from senescence-promoting genes to anti-aging pill. Drug Discov. Today. 2007;12(5–6):218–224. - PubMed
    1. Carmona J.J., Michan S. Biology of healthy aging and longevity. Rev. Invest. Clin. 2016;68(1):7–16. - PubMed
    1. Fang Y., Bartke A. Prolonged rapamycin treatment led to the beneficial metabolic switch. Aging (N Y) 2013;5(5):328–329. - PMC - PubMed
    1. Guarda E., Marchant E., Fajuri A., Martínez A., Morán S., Mendez M., Uriarte P., Valenzuela E., Lazen R. Oral rapamycin to prevent human coronary stent restenosis: a pilot study. Am. Heart J. 2004;148(2):e9. - PubMed
    1. Shioi T., McMullen J.R., Tarnavski O., Converso K., Sherwood M.C., Manning W.J., Izumo S. Rapamycin attenuates load-induced cardiac hypertrophy in mice. Circulation. 2003;107(12):1664–1670. - PubMed
    1. Sarkar S., Ravikumar B., Floto R.A., Rubinsztein D.C. Rapamycin, and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ. 2009;16(1):46–56. - PubMed
    1. Kolosova N.G., Muraleva N.A., Zhdankina A.A., Stefanova N.A., Fursova A.Z., Blagosklonny M.V. Prevention of age-related macular degeneration-like retinopathy by rapamycin in rats. Am. J. Pathol. 2012;181(2):472–477. - PubMed
    1. Chiao Y.A., Kolwicz S.C., Basisty N., Gagnidze A., Zhang J., Gu H., Djukovic D., Beyer R.P., Raftery D., MacCoss M., Tian R., Rabinovitch P.S. Rapamycin transiently induces mitochondrial remodeling to reprogram energy metabolism in old hearts. Aging (N Y) 2016;8(2):314–327. - PMC - PubMed
    1. Saxton R.A., Sabatini D.M. mTOR signaling in growth, metabolism, and disease. Cell. 2017;169(2):361–371. - PubMed
    1. López-Otín C., Blasco M.A., Partridge L., Serrano M., Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–1217. - PMC - PubMed
    1. Mitchell F. Vitamin-D and COVID-19: do deficient risk a poorer outcome? Lancet Diabetes Endocrinol. 2020;8(7):570. - PMC - PubMed
    1. Grant W.B., Lahore H., McDonnell S.L., Baggerly C.A., French C.B., Aliano J.L., Bhattoa H.P. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients. 2020;12(4) - PMC - PubMed
    1. Al-Hendy A., Diamond M.P., Boyer T.G., Halder S.K. Vitamin D3 inhibits Wnt/β-catenin and mTOR signaling pathways in human uterine fibroid cells. J. Clin. Endocrinol. Metab. 2016;101(4):1542–1551. - PMC - PubMed
    1. Lisse T.S., Hewison M. Vitamin D: a new player in the world of mTOR signaling. Cell Cycle. 2011;10(12):1888–1889. - PMC - PubMed
    1. Sharan C., Halder S.K., Thota C., Jaleel T., Nair S., Al-Hendy A. Vitamin D inhibits proliferation of human uterine leiomyoma cells via catechol-O-methyltransferase. Fertil. Steril. 2011;95(1):247–253. - PMC - PubMed
    1. Chang G.R., Chiu Y.S., Wu Y.Y., Chen W.Y., Liao J.W., Chao T.H., Mao F.C. Rapamycin protects against high fat diet-induced obesity in C57BL/6J mice. J. Pharmacol. Sci. 2009;109(4):496–503. - PubMed
    1. Song P., Li W., Xie J., Hou Y., You C. Cytokine storm induced by SARS-CoV-2. Clin. Chim. Acta. 2020;509:280–287. - PMC - PubMed
    1. Foldenauer M.E., McClellan S.A., Berger E.A., Hazlett L.D. Mammalian target of rapamycin regulates IL-10 and resistance to Pseudomonas aeruginosa corneal infection. J. Immunol. 2013;190(11):5649–5658. - PMC - PubMed
    1. Nepomuceno R.R., Balatoni C.E., Natkunam Y., Snow A.L., Krams S.M., Martinez O.M. Rapamycin inhibits the interleukin 10 signal transduction pathway and the growth of Epstein Barr virus B-cell lymphomas. Canc. Res. 2003;63(15):4472–4480. - PubMed
    1. Ekshyyan O., Khandelwal A.R., Rong X., Moore-Medlin T., Ma X., Alexander J.S., Nathan C.O. Rapamycin targets Interleukin 6 (IL-6) expression and suppresses endothelial cell invasion stimulated by tumor cells. Am. J. Trans. Res. 2016;8(11):4822–4830. - PMC - PubMed
    1. Ferrer I.R., Araki K., Ford M.L. Paradoxical aspects of rapamycin immunobiology in transplantation. Am. J. Transplant. 2011;11(4):654–659. - PMC - PubMed
    1. Poglitsch M., Weichhart T., Hecking M., Werzowa J., Katholnig K., Antlanger M., Krmpotic A., Jonjic S., Hörl W.H., Zlabinger G.J., Puchhammer E., Säemann M.D. CMV late phase-induced mTOR activation is essential for efficient virus replication in polarized human macrophages. Am. J. Transplant. 2012;12(6):1458–1468. - PubMed
    1. Arunachalam P.S., Wimmers F., Mok C.K.P., Perera R.A.P.M., Scott M., Hagan T., Sigal N., Feng Y., Bristow L., Tak-Yin Tsang O., Wagh D., Coller J., Pellegrini K.L., Kazmin D., Alaaeddine G., Leung W.S., Chan J.M.C., Chik T.S.H., Choi C.Y.C., Huerta C., Paine McCullough M., Lv H., Anderson E., Edupuganti S., Upadhyay A.A., Bosinger S.E., Maecker H.T., Khatri P., Rouphael N., Peiris M., Pulendran B. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science. 2020;369(6508):1210–1220. - PubMed
    1. Weiner S.M., Sellin L., Vonend O., Schenker P., Buchner N.J., Flecken M., Viebahn R., Rump L.C. Pneumonitis associated with sirolimus: clinical characteristics, risk factors and outcome--a single-centre experience and review of the literature. Nephrol. Dial. Transplant. 2007;22(12):3631–3637. - PubMed
    1. Pallet N., Legendre C. Adverse events associated with mTOR inhibitors. Expet Opin. Drug Saf. 2013;12(2):177–186. - PubMed
    1. Kaplan B., Qazi Y., Wellen J.R. Strategies for the management of adverse events associated with mTOR inhibitors. Transplant. Rev. 2014;28(3):126–133. - PubMed
    1. Bar-Peled L., Schweitzer L.D., Zoncu R., Sabatini D.M. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell. 2012;150(6):1196–1208. - PMC - PubMed
    1. Carroll B., Maetzel D., Maddocks O.D., Otten G., Ratcliff M., Smith G.R., Dunlop E.A., Passos J.F., Davies O.R., Jaenisch R., Tee A.R., Sarkar S., Korolchuk V.I. Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity. Elife. 2016;5 - PMC - PubMed
    1. Bonam S.R., Wang F., Muller S. Lysosomes as a therapeutic target. Nat. Rev. Drug Discov. 2019;18(12):923–948. - PMC - PubMed
    1. Samuels Y., Waldman T. Oncogenic mutations of PIK3CA in human cancers. Curr. Top. Microbiol. Immunol. 2010;347:21–41. - PMC - PubMed
    1. Weigelt B., Warne P.H., Downward J. PIK3CA mutation, but not PTEN loss of function, determines the sensitivity of breast cancer cells to mTOR inhibitory drugs. Oncogene. 2011;30(29):3222–3233. - PubMed
    1. Di Nicolantonio F., Arena S., Tabernero J., Grosso S., Molinari F., Macarulla T., Russo M., Cancelliere C., Zecchin D., Mazzucchelli L., Sasazuki T., Shirasawa S., Geuna M., Frattini M., Baselga J., Gallicchio M., Biffo S., Bardelli A. Deregulation of the PI3K and KRAS signaling pathways in human cancer cells determines their response to everolimus. J. Clin. Invest. 2010;120(8):2858–2866. - PMC - PubMed
    1. Yoon M.S. mTOR as a key regulator in maintaining skeletal muscle mass. Front. Physiol. 2017;8:788. - PMC - PubMed
    1. Husain A., Hu N., Sadow P.M., Nucera C. Expression of angiogenic switch, cachexia and inflammation factors at the crossroad in undifferentiated thyroid carcinoma with BRAF(V600E) Canc. Lett. 2016;380(2):577–585. - PMC - PubMed
    1. Sargiacomo C., Sotgia F., Lisanti M.P. COVID-19 and chronological aging: senolytics and other anti-aging drugs for the treatment or prevention of corona virus infection? Aging (N Y) 2020;12(8):6511–6517. - PMC - PubMed
    1. Wu R., Wang L., Kuo H.D., Shannar A., Peter R., Chou P.J., Li S., Hudlikar R., Liu X., Liu Z., Poiani G.J., Amorosa L., Brunetti L., Kong A.N. An update on current therapeutic drugs treating COVID-19. Curr. Pharmacol. Rep. 2020:1–15. - PMC - PubMed
    1. Zhou Y., Hou Y., Shen J., Huang Y., Martin W., Cheng F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 2020;6:14. - PMC - PubMed
Reply
Share: