doi: 10.1016/j.cbi.2020.109282. Epub 2020 Oct 6.
Rapamycin as a potential repurpose drug candidate for the treatment of COVID-19
-
- PMID: 33031791
-
- PMCID: PMC7536130
Free PMC article
Abstract
The novel human coronavirus-2 (HCoV-2), called SARS-CoV-2, is the causative agent of Coronavirus Induced Disease (COVID-19) and has spread causing a global pandemic. Currently, there is no vaccine to prevent infection nor any approved drug for the treatment. The development of a new drug is time-consuming and cannot be relied on as a solution in combatting the immediate global challenge. In such a situation, the drug repurposing becomes an attractive solution to identify the potential of COVID-19 treatment by existing drugs, which are approved for other indications. Here, we review the potential use of rapamycin, an mTOR (Mammalian Target of Rapamycin) inhibitor that can be repurposed at low dosages for the treatment of COVID-19. Rapamycin inhibits protein synthesis, delays aging, reduces obesity in animal models, and inhibits activities or expression of pro-inflammatory cytokines such as IL-2, IL-6 and, IL-10. Overall, the use of rapamycin can help to control viral particle synthesis, cytokine storms, and contributes to fight the disease by its anti-aging and anti-obesity effects. Since, rapamycin targets the host factors and not viral machinery, it represents a potent candidate for the treatment of COVID-19 than antiviral drugs as its efficacy is less likely to be dampened with a high mutation rate of viral RNA. Additionally, the inhibitory effect of rapamycin on cell proliferation may aid in reducing viral replication. Therefore, by drug repurposing, low dosages of rapamycin can be tested for the potential treatment of COVID-19/SARS-CoV-2 infection.
Keywords: COVID-19; Drug repurposing; Rapamycin; SARS-CoV-2; mTOR.
Conflict of interest statement
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Similar articles
-
Old Drugs for a New Virus: Repurposed Approaches for Combating COVID-19.ACS Infect Dis. 2020 Sep 11;6(9):2304-2318. doi: 10.1021/acsinfecdis.0c00343. Epub 2020 Aug 10.PMID: 32687696 Free PMC article. Review.
-
Lithium chloride combination with rapamycin for the treatment of COVID-19 pneumonia.Med Hypotheses. 2020 Sep;142:109798. doi: 10.1016/j.mehy.2020.109798. Epub 2020 May 1.PMID: 32413699 Free PMC article. No abstract available.
-
Repurposing old drugs as antiviral agents for coronaviruses.Biomed J. 2020 Aug;43(4):368-374. doi: 10.1016/j.bj.2020.05.003. Epub 2020 May 23.PMID: 32563698 Free PMC article.
-
Identification of SARS-CoV-2 Cell Entry Inhibitors by Drug Repurposing Using in silico Structure-Based Virtual Screening Approach.Front Immunol. 2020 Jul 10;11:1664. doi: 10.3389/fimmu.2020.01664. eCollection 2020.PMID: 32754161 Free PMC article.
-
The Mechanistic Target of Rapamycin (mTOR): Novel Considerations as an Antiviral Treatment.Curr Neurovasc Res. 2020;17(3):332-337. doi: 10.2174/1567202617666200425205122.PMID: 32334502 Free PMC article. Review.
References
-
- Ashburn T.T., Thor K.B. Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 2004;3(8):673–683. - PubMed
-
- Caron A., Richard D., Laplante M. The roles of mTOR complexes in lipid metabolism. Annu. Rev. Nutr. 2015;35:321–348. - PubMed
-
- Martel R.R., Klicius J., Galet S. Inhibition of the immune response by rapamycin, a new antifungal antibiotic. Can. J. Physiol. Pharmacol. 1977;55(1):48–51. - PubMed
-
- Dumont F.J., Staruch M.J., Koprak S.L., Melino M.R., Sigal N.H. Distinct mechanisms of suppression of murine T cell activation by the related macrolides FK-506 and rapamycin. J. Immunol. 1990;144(1):251–258. - PubMed
-
- Wagle N., Grabiner B.C., Van Allen E.M., Hodis E., Jacobus S., Supko J.G., Stewart M., Choueiri T.K., Gandhi L., Cleary J.M., Elfiky A.A., Taplin M.E., Stack E.C., Signoretti S., Loda M., Shapiro G.I., Sabatini D.M., Lander E.S., Gabriel S.B., Kantoff P.W., Garraway L.A., Rosenberg J.E. Activating mTOR mutations in a patient with an extraordinary response on a phase I trial of everolimus and pazopanib. Canc. Discov. 2014;4(5):546–553. - PMC - PubMed
-
- Shaw R.J., Bardeesy N., Manning B.D., Lopez L., Kosmatka M., DePinho R.A., Cantley L.C. The LKB1 tumor suppressor negatively regulates mTOR signaling. Canc. Cell. 2004;6(1):91–99. - PubMed
-
- Oza A.M., Elit L., Tsao M.S., Kamel-Reid S., Biagi J., Provencher D.M., Gotlieb W.H., Hoskins P.J., Ghatage P., Tonkin K.S., Mackay H.J., Mazurka J., Sederias J., Ivy P., Dancey J.E., Eisenhauer E.A. Phase II study of temsirolimus in women with recurrent or metastatic endometrial cancer: a trial of the NCIC Clinical Trials Group. J. Clin. Oncol. 2011;29(24):3278–3285. - PMC - PubMed
-
- Harrison D.E., Strong R., Sharp Z.D., Nelson J.F., Astle C.M., Flurkey K., Nadon N.L., Wilkinson J.E., Frenkel K., Carter C.S., Pahor M., Javors M.A., Fernandez E., Miller R.A. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009;460(7253):392–395. - PMC - PubMed
-
- Vellai T., Takacs-Vellai K., Zhang Y., Kovacs A.L., Orosz L., Müller F. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature. 2003;426(6967):620. - PubMed
-
- Dai D.F., Karunadharma P.P., Chiao Y.A., Basisty N., Crispin D., Hsieh E.J., Chen T., Gu H., Djukovic D., Raftery D., Beyer R.P., MacCoss M.J., Rabinovitch P.S. Altered proteome turnover and remodeling by short-term caloric restriction or rapamycin rejuvenate the aging heart. Aging Cell. 2014;13(3):529–539. - PMC - PubMed
-
- Blagosklonny M.V. Aging and immortality: quasi-programmed senescence and its pharmacologic inhibition. Cell Cycle. 2006;5(18):2087–2102. - PubMed
-
- Blagosklonny M.V. An anti-aging drug today: from senescence-promoting genes to anti-aging pill. Drug Discov. Today. 2007;12(5–6):218–224. - PubMed
-
- Carmona J.J., Michan S. Biology of healthy aging and longevity. Rev. Invest. Clin. 2016;68(1):7–16. - PubMed
-
- Guarda E., Marchant E., Fajuri A., Martínez A., Morán S., Mendez M., Uriarte P., Valenzuela E., Lazen R. Oral rapamycin to prevent human coronary stent restenosis: a pilot study. Am. Heart J. 2004;148(2):e9. - PubMed
-
- Shioi T., McMullen J.R., Tarnavski O., Converso K., Sherwood M.C., Manning W.J., Izumo S. Rapamycin attenuates load-induced cardiac hypertrophy in mice. Circulation. 2003;107(12):1664–1670. - PubMed
-
- Sarkar S., Ravikumar B., Floto R.A., Rubinsztein D.C. Rapamycin, and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ. 2009;16(1):46–56. - PubMed
-
- Kolosova N.G., Muraleva N.A., Zhdankina A.A., Stefanova N.A., Fursova A.Z., Blagosklonny M.V. Prevention of age-related macular degeneration-like retinopathy by rapamycin in rats. Am. J. Pathol. 2012;181(2):472–477. - PubMed
-
- Saxton R.A., Sabatini D.M. mTOR signaling in growth, metabolism, and disease. Cell. 2017;169(2):361–371. - PubMed
-
- Chang G.R., Chiu Y.S., Wu Y.Y., Chen W.Y., Liao J.W., Chao T.H., Mao F.C. Rapamycin protects against high fat diet-induced obesity in C57BL/6J mice. J. Pharmacol. Sci. 2009;109(4):496–503. - PubMed
-
- Nepomuceno R.R., Balatoni C.E., Natkunam Y., Snow A.L., Krams S.M., Martinez O.M. Rapamycin inhibits the interleukin 10 signal transduction pathway and the growth of Epstein Barr virus B-cell lymphomas. Canc. Res. 2003;63(15):4472–4480. - PubMed
-
- Poglitsch M., Weichhart T., Hecking M., Werzowa J., Katholnig K., Antlanger M., Krmpotic A., Jonjic S., Hörl W.H., Zlabinger G.J., Puchhammer E., Säemann M.D. CMV late phase-induced mTOR activation is essential for efficient virus replication in polarized human macrophages. Am. J. Transplant. 2012;12(6):1458–1468. - PubMed
-
- Arunachalam P.S., Wimmers F., Mok C.K.P., Perera R.A.P.M., Scott M., Hagan T., Sigal N., Feng Y., Bristow L., Tak-Yin Tsang O., Wagh D., Coller J., Pellegrini K.L., Kazmin D., Alaaeddine G., Leung W.S., Chan J.M.C., Chik T.S.H., Choi C.Y.C., Huerta C., Paine McCullough M., Lv H., Anderson E., Edupuganti S., Upadhyay A.A., Bosinger S.E., Maecker H.T., Khatri P., Rouphael N., Peiris M., Pulendran B. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science. 2020;369(6508):1210–1220. - PubMed
-
- Weiner S.M., Sellin L., Vonend O., Schenker P., Buchner N.J., Flecken M., Viebahn R., Rump L.C. Pneumonitis associated with sirolimus: clinical characteristics, risk factors and outcome--a single-centre experience and review of the literature. Nephrol. Dial. Transplant. 2007;22(12):3631–3637. - PubMed
-
- Pallet N., Legendre C. Adverse events associated with mTOR inhibitors. Expet Opin. Drug Saf. 2013;12(2):177–186. - PubMed
-
- Kaplan B., Qazi Y., Wellen J.R. Strategies for the management of adverse events associated with mTOR inhibitors. Transplant. Rev. 2014;28(3):126–133. - PubMed
-
- Weigelt B., Warne P.H., Downward J. PIK3CA mutation, but not PTEN loss of function, determines the sensitivity of breast cancer cells to mTOR inhibitory drugs. Oncogene. 2011;30(29):3222–3233. - PubMed
-
- Di Nicolantonio F., Arena S., Tabernero J., Grosso S., Molinari F., Macarulla T., Russo M., Cancelliere C., Zecchin D., Mazzucchelli L., Sasazuki T., Shirasawa S., Geuna M., Frattini M., Baselga J., Gallicchio M., Biffo S., Bardelli A. Deregulation of the PI3K and KRAS signaling pathways in human cancer cells determines their response to everolimus. J. Clin. Invest. 2010;120(8):2858–2866. - PMC - PubMed